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Abstract

There is significant interest in the models for production of short gamma-ray bursts (GRBs). Until now, the number
of known short GRBs with multi-wavelength afterglows has been small. While the Fermi GRB Monitor detects
many GRBs relative to the Neil Gehrels Swift Observatory, the large localization regions makes the search for
counterparts difficult. With the Zwicky Transient Facility (ZTF) recently achieving first light, it is now fruitful
to use its combination of depth (mAB∼20.6), field of view (≈47 square degrees), and survey cadence
(every ∼3 days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B,
which was recently announced by the Fermi GRB Monitor as a short GRB. ZTF imaged ≈2900 square degrees of
the localization region, resulting in the coverage of 61.6% of the enclosed probability over two nights to a depth of
mAB∼20.5. We characterized 14 previously unidentified transients, and none were found to be consistent with a
short GRB counterpart. This search with the ZTF shows it is an efficient camera for searching for coarsely
localized short GRB and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption
to its nominal cadence.
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1. Introduction

Gamma-ray bursts (GRBs), 50 years after their discovery by
the Vela Satellites (Klebesadel et al. 1973), are still among the

brightest observable objects in the universe. With their intrinsic
brightness and discovery at cosmological distances (Metzger
et al. 1997; Gehrels & Mészáros 2012), they remain a mystery
and an active area of research. Even their classification into
the traditional “short” (SGRB) and “long” (LGRB) classes is
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subject to debate (Norris & Bonnell 2006; Zhang & Choi 2008;
Bromberg et al. 2013). There are a variety of models for GRBs
that have been developed since their discovery. For example,
the “fireball” model (Wijers et al. 1997; Mészáros &
Rees 1998), where a highly relativistic jet of electron/
positron/baryon plasma is emitted by a compact central engine
produced from the merger of two neutron stars (or one neutron
star and one black hole), predicts production of gamma-rays
and hard X-rays within the jet. In addition, an “afterglow” is
produced by interaction of the jet with nearby ambient material,
resulting in emission in the X-ray, optical, and radio for several
days following the GRB. Later models have been produced to
understand observed deviations in light curves seen from this
model (Willingale et al. 2007; Cannizzo & Gehrels 2009;
Metzger et al. 2011; Duffell & MacFadyen 2015), including
slow-moving cocoons (Nagakura et al. 2014; Kasliwal et al.
2017; Lazzati et al. 2017; Mooley et al. 2017) and Gaussian
structured jets (Kumar & Granot 2003; Abbott et al. 2017;
Troja et al. 2017). In the case of a compact merger, there is an
additional component of highly neutron rich, unbound matter
which is driven by radioactive decay of r-process elements that
can heat the ejecta and power a thermal ultraviolet/optical/
near-infrared transient known as a kilonova (or macronova)
(Lattimer & Schramm 1974; Li & Paczynski 1998; Metzger
et al. 2010; Rosswog 2015; Kasen et al. 2017). These sources
are expected to be broadly isotropic and therefore it may be
possible to observe a kilonova regardless of the orientation of
the system (Roberts et al. 2011).

With both its depth (mAB∼20.6 in 30 s), wide field of view
(FOV) (≈47 square degrees), and rapid cadence (every ∼3
days), the Zwicky Transient Facility (ZTF; Bellm et al. 2019;
Dekany et al. 2018; Graham et al. 2018), a camera and
associated observing system on the Palomar 48 inch telescope,
is important for coordinated follow-up of short GRB events.
The cadence in particular is important for follow-up, as the
previous imaging provides significant constraints on the
explosion time of any new transients. It improves significantly
in FOV over the Palomar Transient Factory (Law et al. 2009;
Rau et al. 2009), which had a 7.3 square degree imager capable
of performing ≈100 degrees squared searches (Singer et al.
2013), and the regular cadence of observations places stringent
limits on the explosion time of new transients. It supplements
existing systems like the Gravitational-wave Optical Transient
Observer (O’Brien 2018) and Asteroid Terrestrial-impact Last
Alert System (ATLAS) (Tonry et al. 2018). It uses “reference
images,” which are stacks of typically at least 15 images (Masci
et al. 2019). These reference images are created for a fixed grid
of tiles with minimal dithering, which is due to the desire to
simplify the data processing for image subtraction (Bellm et al.
2019). At the time of paper submission (2018 November),
about 70% of the sky visible from Palomar currently has
reference image coverage available in g- and r-bands; the exact
numbers differ due to the varying number of observations in

each filter. These references images are required for image
differencing, which uses the ZOGY algorithm (Zackay et al.
2016) to identify moving and changing sources.
ZTF is part of the Global Relay of Observatories Watching

Transients Happen (GROWTH) network of telescopes for rapid
classification of identified candidates, whose follow-up is
coordinated via a marshal developed for this purpose (Kasliwal
et al. 2019). The idea of the marshal is that it allows time-
domain astronomers to create filters to save sources from
different discovery streams, such as ZTF, and coordinate
follow-up with various queue scheduled or human operated
telescopes.
GRB 180523B triggered the Fermi GRB Monitor at

18:46:28.11 (UTC) on 2018 May 23. It was classified as a
GRB by the flight software and localized by the automated
system which performs the automated production and distribu-
tion of the localizations. Its localization region had a 1σ
circular-equivalent statistical error of 13° (including the
systematic error results in a 90% probability region
≈6600 square degrees). It was automatically flagged as a
likely SGRB. The GRB was given a GBM trigger number,
180523782, and the standard analysis is reported in the Fermi
GBM online burst catalog (Bhat et al. 2016). The duration,
calculated as the usual T90, is 1.984 s. While this is near the
historical split time of 2 s, modeling the GBM T90 distribution
as two log-normal functions yields a 90% probability that this
GRB belongs to the short duration class. The time-integrated
best fit model is a comptonized model (a power law with an
exponential cutoff), which is typical for SGRBs. The peak
energy is ≈1MeV (1150± 711 keV), which is in the top
quartile for SGRBs, lending additional evidence to the
classification of a short hard GRB. The burst has a 64 ms peak
flux at the 20th percentile for SGRBs and a fluence at the 40th
percentile. The prompt brightness suggests the afterglow is
likely to be of average luminosity (Nysewander et al. 2009).
We are interested in systematically detecting the optical

afterglow of SGRBs to characterize their emission mechanisms
and their hosts. This is a part of a broader Target of
Opportunity (ToO) program searching for optical counterparts
to neutrinos and gravitational waves as well. This program
follows a Palomar Transient Factory program searching for
LGRB afterglows from the Fermi GRB Monitor; eight
afterglows were found (Singer et al. 2013, 2015). Only a few
other LGRB afterglows have been discovered serendipitously,
e.g., Stalder et al. (2017). These data will supplement the
existing catalog of light curves from many other SGRBs
(Berger et al. 2005, 2013; Fox et al. 2005; Levan et al. 2006;
Roming et al. 2006; Soderberg et al. 2006; Zhang et al. 2007;
McGlynn et al. 2008; Antonelli et al. 2009; Perley et al.
2009; Ackermann et al. 2010; Tanvir et al. 2013; Zhu et al.
2015; Fong et al. 2016; Troja et al. 2016; Abbott et al. 2017).
The multi-wavelength data is essential for constraining red-
shifts, energetics, emission geometry, and conditions in the
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circumburst medium, while their locations within galaxies
provide clues as to their progenitors (Fong & Berger 2013). In
this paper, we describe the ToO search for the optical
counterpart of GRB 180523B. We describe our observing plan
in Section 2. We summarize image quality information in
Section 3. The identified candidates, including their follow-up,
are summarized in Section 4. Section 5 summarizes our
conclusions and future outlook.

2. Observing Plan

The observing strategy was as follows. The fields we first
observed corresponded to those enclosed in the 90% localiza-
tion region (see Figure 1). On the first night (2018 May 24), we
planned a series of r-band, g-band, and then again r-band
images. Each set of observations began immediately after the
first; this sequence allowed for measurement of both color and
fade in any transients detected, useful for their eventual
classification. We note that this left more than half of the night
for the regular survey mode. To determine which fields would
be imaged, we removed any that would not be available at an
airmass less than 3 during the portion of the night when the

localization region was visible from Palomar. The scheduling
web interface includes airmass plots as well to help human
observers determine when to schedule observations for. In
addition, we removed any fields without reference images in
the bands of interest. From there, we scheduled 60 s exposures
in r-band, g-band, and then r-band, which are twice as long as
the nominal 30 s exposures performed in survey mode. We
ordered the observations by R.A. We note that while the tiles
were selected using an algorithm, they were scheduled
manually by calling the on-duty astronomer. This schedule
consists of an ordered list of sky locations and exposure times
for the desired images. We obtained images covering ≈2900
square degrees beginning at 3:51 UT on 2018 May 24, which is
about 9.1 hr after the burst trigger time. This delay was due to
the fact that the SGRB alert came during the day at Palomar,
and 3:51 UT was the start of nightly observations.
On the second night, we took a series of r-band and g-band

exposures in the same fields as the night before. This time, 75 s
exposures were scheduled for the same time as the night before
in order to be more sensitive and catch any potentially fading
counterparts. In total, we used 2:16 hr on the first night and
2:43 hr on the second night. For comparison, ZTF observed for
about 7:50 hr those nights, and so we used ≈25% of the
available observation time.
The ZTF FOV is comprised of 16 CCDs, each composed of

4 quadrants, placed in a 4×4 orthogonal grid, with about 12%
of the nominal tile area lost to gaps between the detectors
(known as chip gaps). The generation of the observation

Figure 1. Target of Opportunity marshal representation of GRB 180523B
scheduling. The black contours indicate the 50% and 90% credible levels. Tiles
within the 90% credible interval are considered for imaging. The unshaded tiles
with a single dot within the 90% credible interval do not contain reference
images and therefore are not eligible to be analyzed for new transients with
difference imaging. The red tiles shown contain reference images, but were not
imaged due to time, airmass, or moon constraints. The checkered blue tiles
shown are those scheduled to be imaged. Table 1 shows the success rate of the
requested observations.
(A color version of this figure is available in the online journal.)

Figure 2. Flow diagram of the filtering scheme for candidate transient sources
detected after difference imaging. Each step is described in Section 4.2. The
number of transients that survived after all the filter steps is 297 for the night of
May 25th. Objects with previous detections are still included for scanning.

(A color version of this figure is available in the online journal.)
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schedule initially ignored the presence of the chip gaps. The
total source-localization probability enclosed on 2018 May 24,
accounting for the loss of probability due to the chip gaps, is
61.6%. In the second night of observations (2018 May 25),
where two observation windows in a single night was used, the
total sky-localization probability enclosed in the observed
fields was 68.4%. The slightly greater containment of
probability is due to the different airmass constraint require-
ments used in the first observation, where three observation
windows were required. We also note that the order of the tiles
by probability does not change with the inclusion of the
chip gaps.

In addition to candidates that had the expected number of
exposures over the two nights (5 if they were in a g and r field,
3 in just r, 2 in just g), some objects appeared in more than one
field. In some of those cases, the objects were near the edges of
the chips and were not found in those observations. There were
also some objects for which there were not the expected
number of exposures (only 1 in g, etc.). Once again, some of
these candidates fall in chip gaps, which move from image to
image.

3. Image Quality

Successful analysis of a requested ZTF observation is a two-
step process. Requested fields must successfully pass through
both the ZTF robotic-observing program and also through the
image-processing pipeline at the Infrared Processing and
Analysis Center (IPAC). Therefore, the “success rate” is the
percentage of quandrants with requested observations were
processed.

We show the success rate in the entire image processing
pipeline in Table 1. 108 fields (with 6912 total quadrants), were
requested for observation on the first night (2018 May 24). Of
those 108 fields, 105 were successfully processed by IPAC.
Some quadrants fail the processing due to bad seeing (>5″).
12% of the quadrants failed processing for reasons of this type.
95 fields (6080 total quadrants) were requested on the second
night (2018 May 25). Of those 95 fields, 94 were successfully
processed by IPAC, with only 2% of quadrants failing
processing. As weather conditions are the dominant contrib-
ution to missing quadrants, there is not much gain to be

expected. The success rate over the course of both nights
is 92.8%.
We can estimate the loss of probability due to these quadrant

failures. Assuming that the scales in which the sky-localization
changes is much larger than the quadrant size, we can estimate
the total loss of probability enclosed as 7.4% and 4.9% on night
1 and 2 respectively. The 5σ median depth of the observations
over the two nights is mAB>20.3 in r-band and mAB>20.6
in g-band.

4. Candidates

4.1. Detection and Filtering

Once the observations are taken and processed by the IPAC
pipeline, alerts known as AVRO packets are created for each
object (Masci et al. 2019; Patterson et al. 2019). These alerts
contain information about the transient, including its magni-
tude, proximity to other sources and its previous history of
detections among other metrics. The GROWTH collaboration
has developed a framework that can handle the large number of
alerts that ZTF produces in order to select the objects that
are potentially interesting. Moreover, as each group within
the GROWTH collaboration has a particular scientific focus,
the language provides a tool to filter, discriminate and retrieve
object of interest (Kasliwal et al. 2019).
In particular, for looking for optical counterparts of SGRBs,

the filter restricted candidates to those with the following
properties (see Figure 2):

1. Part of the ToO. The candidates must belong to the fields
related to the ToO observation of GRB 180523B.

2. Positive subtraction. As the transients from ZTF images
are detected by comparing reference images to the most
recent image, it is required that the subtraction yields a
positive difference in order to be considered a valid
candidate. This is in contrast to negative subtractions,
which are sources that decreased in brightness since the
reference images were taken.

3. It is real. The GROWTH collaboration has developed a
Real-Bogus index (Mahabal et al. 2019) trained on
common image artifacts, including hot pixels and ghosts
from bright stars. The index is the result of a random
forest classifier and its value was restricted to >0.15, the
optimal to determine whether the source is a product of
an artifact or if it is real.

4. No point source underneath. The coordinates of
the source should not coincide with a point source
(Tachibana Miller 2018). This helps to rule out stellar
variable sources or extragalactic transient/variable
sources that are at small offsets from their hosts.

5. Two detections. The object should have at least two
detections during the night; asteroids, other solar system

Table 1
Success Rates for the Requested ZTF Observation Fields Over Each Night

Date Fields Fields Fields Total Quadrant
Requested Observed Processed Success Rate

May 24 108 106 105 88%
May 25 95 94 94 98%

Note. The percentage of fields processed includes those with any quadrant in
that field is processed.
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objects, and cosmic rays should not have a previous
detection.

6. Far from a bright star. To avoid any kind of artifacts due
to bright nearby source, including diffraction spikes or
ghosts, the candidate is rejected if it is in the vicinity
(20″) of a bright star (mAB<15).

4.2. Scanning and Selection

During each night, the data are filtered, and the results are
shown in the marshal for each scientific program. The interface
shows the annotations retrieved from the filter, including color,
cross-matches to external catalogs and positioning of the object
on the chip and focal plane, as well as the historical light-curve
of the object and subtracted images. This allows an on-duty
astronomer to visually inspect the results of the marshal filter
and proceed with a more refined candidate selection by saving
the most interesting candidates into the project’s report. The
interface allows individuals to cross-match the candidates with
a number of databases in order to rule out candidates based on
the available data. For example, it is possible to rule out a
candidate based on WISE colors (Wright et al. 2010), since
active galactic nuclei and quasars lay in a particular locus in the
WISE color-space (Stern et al. 2012). Likewise, a candidate can
be ruled out if it has an ATLAS (Tonry et al. 2018) detection
registered before the SGRB alert. While we do not explicitly
use the g- and r-band colors in the filtering, they are also
potentially useful for classifying objects.

A number of candidates in the GROWTH report page
presented a pattern of consecutive detection and non-detection
in very short periods of time, thus requiring further
investigation; these were determined to be artifacts from the
ghosts of bright stars. In addition, we do not consider sources
that were first detected by ZTF prior to the time of the SGRB.
This resulted in 29 sources, 15 of which were artifacts; different
scenarios can cause the presence of a bogus source, such as a
nearby bright source or a bad pixel in the CCD. Thus, for GRB
180523B the final candidate selection has 14 objects, whose
properties are noted in Table 2; 11 of these have been followed-
up, as described in the following subsection.

4.3. Follow-up and Results

For the candidates that met the requirements, we requested
additional photometry and spectroscopy. However, the obser-
vability of some of the transients was airmass constrained or
required observations soon after sunset. This resulted in three
candidates not being observed; these objects are noted at the
bottom of Table 2.

The GROWTH collaboration has access to a number of
facilities to follow-up the candidates. Particularly, photometric
data were obtained using the Kitt Peak EMCCD Demonstrator
(KPED) on the Kitt Peak 84 inch telescope (Coughlin et al. 2019).

This instrument has the ability to take a set of short exposures and
to modify its gain within a range, but the conventional long
exposure-fixed gain mode was used for this follow-up. The
photometric data taken with KPED was dark subtracted and flat
field calibrated, and the magnitudes were determined using Source
Extractor. The spectroscopic data were obtained using both the
SED Machine (Blagorodnova et al. 2018) on the Palomar 60 inch
(P60) telescope and the Double Spectrograph on the Palomar
200 inch (P200) telescope.
The classification for the candidates that had spectra was

rapid and resulted in four new supernova Ia discovered. In
Table 2, there is a summary of the data of the candidates. As
previously mentioned, most of the candidates set very early in
the night, reaching airmasses of 2 at the beginning of the
observing run. Three of these candidates were not observable
by follow-up facilities due to airmass constraints. However,
seven of these objects were imaged with KPED a few weeks
after their discovery. None of the sources had faded
completely, indicating that they are not related to a SGRB.
Models and previous SGRBs detected have characterized the

evolution of these kind of transients as rapidly fading sources.
Thus our follow-up can discriminate between SGRBs and other
transients by taking the difference between the magnitude at the
discovery and the magnitude of the follow-up, as well as by
examining the light curve or the spectrum if available. After
having observed a significant portion of the probability region
and classifying 11 of the 14 remaining transients without finding
any potentially viable counterpart for the SGRB, it is possible to
compare the search sensitivity, both in terms of depth and
timescale, to expected counterpart properties. In Figure 3, we
show where the median limits fall relative to known afterglows.
Over 61.6% of the localization, we detected no afterglow
emission to a depth of mAB>20.3 in r-band from 0.6 to 2 days
after the merger. This comparison shows that future follow-ups
would benefit both from a more rapid response (although in this
case, the follow-up was restricted by the day time as opposed to
technical issues), and taking longer exposures, resulting in
deeper observations (unless the SGRB is in the local universe, as
will be the case for the gravitational-wave counterpart searches).
Earlier observations would not only allow for observations of
objects when they are brighter, but also allow for easier
identification of rapidly fading afterglows, especially when near
the sensitivity limit for the telescope.

5. Conclusions

Our analysis demonstrates the feasibility of large scale TOO
coverage of large sky areas with ZTF. Although we did not find
the optical counterpart to the short GRB, the significant
coverage of the sky localization region gives confidence in
success for future events. In particular, the lack of unrelated
sources, enabled by high cadence pre-burst limits from the
regular ZTF survey, makes follow-up of thousands of square
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Table 2
Follow-up for the Candidates

Candidate Coordinates Magnitude at Discovery Date of Last Observation Data Available Classification Δm/Δt

ZTF18aawozzj 12:31:09.02+57:35:01.8 g=20.2 June 9 P200+DBSP Spectrum SN Ia at z=0.095 L
ZTF18aawnbgg 10:40:54.05+23:44:43.3 r=19.88 June 9 P200+DBSP Spectrum SN Ia at z=0.13 L
ZTF18aawmvbj 10:12:41.17+21:24:55.5 r=19.75 June 9 P200+DBSP Spectrum SN Ia at z=0.14 L
ZTF18aawcwsx 10:40:33.46+47:02:24.4 r=19.84 June 5 P60+SEDM Spectrum SN Ia at z=0.09 L
ZTF18aawnbkw 10:38:47.66+26:18:51.8 r=19.91 June 12 KPED r=20.01 L −0.1 mag/20 days
ZTF18aawmqwo 09:52:06.90+47:18:34.8 r=19.98 June 21 KPED r=19.96 L 0.02 mag/20 days
ZTF18aawmkik 08:51:11.45+13:13:16.7 r=19.04 June 12 KPED r=20.6 L −1.56 mag/20 days
ZTF18aawnmlm 11:03:11.38+42:07:29.9 r=20.12 June 19 KPED r=20.2 L −0.08 mag/18 days
ZTF18aauhzav 10:59:29.32+44:10:02.7 r=19.97 June 19 KPED r=21.4 L −0.1 mag/20 days
ZTF18aavrhqs 11:58:09.57+63:45:34.6 r=19.99 June 21 KPED r=21.4 L −1.41 mag/21 days
ZTF18aawmwwk 10:35:26.51+65:22:34.3 r=19.9 June 21 KPED r=19.8 L +0.1 mag/21 days
ZTF18aawwbwm 08:16:44.98+35:34:13.1 r=19.79 Not observable L L L
ZTF18aawmjru 08:39:11.39+44:01:53.6 r=18.43 Not observable L L L
ZTF18aawmigr 08:48:01.76+29:13:51.9 r=19.63 Not observable L L L

Note. Δm/Δt measures the fade in magnitudes between the first observation with ZTF and the final observation with the follow-up telescopes. For objects with this metric, the lack of rapid measured
fading indicates they are unlikely to be associated with the SGRB.
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degrees possible. This is a significant improvement upon the
intermediate Palomar Transient Factory searches for optical
counterparts to long GRBs, where for example, a 71 degrees
squared search for GRB 130702A was performed in 10 fields,
yielding 43 candidates (Singer et al. 2013). It also serves as a
path-finder for optical follow-up for future gravitational-wave
events, which is important after the significant success of
GW170817, the first joint GW-EM detection (Alexander et al.
2017; Chornock et al. 2017; Cowperthwaite et al. 2017; Drout
et al. 2017; Evans et al. 2017; Haggard et al. 2017; Hallinan
et al. 2017; Kasliwal et al. 2017; Kilpatrick et al. 2017;
Margutti et al. 2017; McCully et al. 2017; Nicholl et al. 2017;
Pian et al. 2017; Shappee et al. 2017; Smartt et al. 2017; Troja
et al. 2017; Utsumi et al. 2017). Some future short GRB
detections are likely to yield kilonovae as well (Ascenzi et al.
2018), which enable joint gravitational-wave and electro-
magnetic studies (Coughlin et al. 2018a, 2018b). Our results
show that for kilonovae produced from GW170817, which has
a peak absolute magnitude of about mAB∼−16, would be
detectable to about 200Mpc, consistent with the LIGO/Virgo
detection horizon (Abbott et al. 2018). While the coverage of
2900 square degrees yielded a coverage of ≈62% of the
probability region, this areal coverage would be more than
sufficient to cover greater than 90% of the probability region
for most future gravitational-wave events (Abbott et al. 2018).
We checked that when estimating the distribution of the
probability content in sky areas of similar size to this skymap
using example gravitational-wave sky maps, on average about
13%–15% of the sky area is lost due to chip-gaps.

Going forward, we will be prioritizing minimizing the time
between the notice of the short GRB and the imaging by ZTF.

These observations were scheduled by hand (Coughlin et al.
2018d), and this scheduling has now been fully automated
and has been demonstrated on the most recent SGRBs that
we have targeted (Cenko et al. 2018; Coughlin et al. 2018e,
2018f, 2018g). Also, there is now a filter for objects without
previous detections. In addition, the scheduling will be done
differently, emphasizing images of higher probability fields
while also accounting for rising and setting fields and the need
to make repeated exposures, potentially in different filters, to
maximize the probability of counterpart detection (Coughlin
et al. 2018c).

Based on observations obtained with the Samuel Oschin
Telescope 48 inch and the 60 inch Telescope at the Palomar
Observatory as part of the Zwicky Transient Facility project. Major
funding has been provided by the U.S National Science Foundation
under grant No. AST-1440341 and by the ZTF partner institutions:
the California Institute of Technology, the Oskar Klein Centre,
the Weizmann Institute of Science, the University of Maryland, the
University of Washington, Deutsches Elektronen-Synchrotron,
the University of Wisconsin-Milwaukee, and the TANGO Program
of the University System of Taiwan. M.C. is supported by the
David and Ellen Lee Postdoctoral Fellowship at the California
Institute of Technology. S.G. is supported by the National Science
Foundation with NSF Award PHY-1607585.
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Figure 3. Light curves for known SGRBs (in the observer frame) with ZTF limits for comparison. The data are a collection of events with measured redshift from
Fong et al. (2015). The ZTF search occupies the gray region in the magnitude vs. time after the trigger diagram. On the left, we plot apparent magnitude, and on the
right, absolute magnitude, where we have taken a fiducial distance of 200 Mpc for the SGRB, consistent with the LIGO/Virgo detection horizon (Abbott et al. 2018).
This distance was used to transform the ZTF apparent magnitude limits into absolute magnitudes, as well as a revised distance for the SGRBs used in the sample.
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